Exercises - Part 8 (Advanced)
- gaussian_noise = np.random.normal(0, 15, img.shape)
- noisy = np.clip(img + gaussian_noise, 0, 255).astype(np.uint8)
- prob = 0.02
- num_salt = int(prob * noisy.size * 0.5)
- coords = [np.random.randint(0, i, num_salt) for i in noisy.shape[:2]]
- noisy[coords[0], coords[1]] = 255
- num_pepper = int(prob * noisy.size * 0.5)
- coords = [np.random.randint(0, i, num_pepper) for i in noisy.shape[:2]]
- noisy[coords[0], coords[1]] = 0
- median = cv2.medianBlur(noisy, 5)
-